MeanAverageRecallReport#

class MeanAverageRecallReport[source]#

Summarize mean average recall metrics on a dataset and model per detections and area range.

Parameters
area_range: tuple, default: (32**2, 96**2)

Slices for small/medium/large buckets.

__init__(area_range: Tuple = (1024, 9216), **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

MeanAverageRecallReport.add_condition(name, ...)

Add new condition function to the check.

MeanAverageRecallReport.add_condition_test_average_recall_greater_than(...)

Add condition - AR score is greater than given score.

MeanAverageRecallReport.clean_conditions()

Remove all conditions from this check instance.

MeanAverageRecallReport.compute(context, ...)

Compute the metric result using the ignite metrics compute method and create display.

MeanAverageRecallReport.conditions_decision(result)

Run conditions on given result.

MeanAverageRecallReport.config([...])

Return check configuration (conditions' configuration not yet supported).

MeanAverageRecallReport.from_config(conf[, ...])

Return check object from a CheckConfig object.

MeanAverageRecallReport.from_json(conf[, ...])

Deserialize check instance from JSON string.

MeanAverageRecallReport.initialize_run(context)

Initialize run by asserting task type and initializing metric.

MeanAverageRecallReport.metadata([with_doc_link])

Return check metadata.

MeanAverageRecallReport.name()

Name of class in split camel case.

MeanAverageRecallReport.params([show_defaults])

Return parameters to show when printing the check.

MeanAverageRecallReport.remove_condition(index)

Remove given condition by index.

MeanAverageRecallReport.run(dataset[, ...])

Run check.

MeanAverageRecallReport.to_json([indent, ...])

Serialize check instance to JSON string.

MeanAverageRecallReport.update(context, ...)

Update the metrics by passing the batch to ignite metric update method.

Examples#