.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "user-guide/tabular/auto_tutorials/plot_add_a_custom_check.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_user-guide_tabular_auto_tutorials_plot_add_a_custom_check.py: ======================= Creating a Custom Check ======================= It is possible to extend deepchecks by implementing custom checks. This enables you to have your own logic of metrics or validation, or even just to display your own graph using deepchecks' suite. * `Check Structure <#check-structure>`__ * `Write a Basic Check <#write-a-basic-check>`__ * `Check Display <#check-display>`__ * :ref:`tabular__custom_check_templates` Check Structure =============== Each check consists of 3 main parts: * Return Value * Display * Conditions This guide will demonstrate how to implement a Check with a return value and display, for adding a condition see :doc:`working with conditions `, or have a look at the examples in :ref:`tabular__custom_check_templates` guide.. Write a Basic Check =================== Let's implement a check for comparing the sizes of the test and the train datasets. The first step is to create check class, which inherits from a base check class. Each base check is differed by its run method signature, read more about all `types <#base-checks-types>`__. In this case we will use ``TrainTestBaseCheck``, which is used to compare between the test and the train datasets. After creating the basic class with the run_logic function we will write our check logic inside it. *Good to know: the return value of a check can be any object, a number, dictionary, string, etc...* The Context Object ------------------ The logic of all tabular checks is executed inside the run_logic() function. The sole argument of the function is the context object, which has the following optional members: - **train**: the train dataset - **test**: the test dataset - **model**: the model When writing your run_logic() function, you can access the train and test datasets using the context object. For more examples of using the Context object for different types of base checks, see the :ref:`tabular__custom_check_templates` guide. Check Example ------------- .. GENERATED FROM PYTHON SOURCE LINES 61-78 .. code-block:: default from deepchecks.core import CheckResult from deepchecks.tabular import Context, Dataset, TrainTestCheck class DatasetSizeComparison(TrainTestCheck): """Check which compares the sizes of train and test datasets.""" def run_logic(self, context: Context) -> CheckResult: ## Check logic train_size = context.train.n_samples test_size = context.test.n_samples ## Return value as check result return_value = {'train_size': train_size, 'test_size': test_size} return CheckResult(return_value) .. GENERATED FROM PYTHON SOURCE LINES 79-80 Hooray! we just implemented a custom check. Now let's create two Datasets and try to run it: .. GENERATED FROM PYTHON SOURCE LINES 80-90 .. code-block:: default import pandas as pd # We'll use dummy data for the purpose of this demonstration train_dataset = Dataset(pd.DataFrame(data={'x': [1,2,3,4,5,6,7,8,9]}), label=None) test_dataset = Dataset(pd.DataFrame(data={'x': [1,2,3]}), label=None) result = DatasetSizeComparison().run(train_dataset, test_dataset) result .. raw:: html
Dataset Size Comparison


.. GENERATED FROM PYTHON SOURCE LINES 91-95 Our check ran successfully but we got the print "Nothing found". This is because we haven't defined to the check anything to display, so the default behavior is to print "Nothing found". In order to access the value that we have defined earlier we can use the "value" property on the result. .. GENERATED FROM PYTHON SOURCE LINES 97-100 .. code-block:: default result.value .. rst-class:: sphx-glr-script-out .. code-block:: none {'train_size': 9, 'test_size': 3} .. GENERATED FROM PYTHON SOURCE LINES 101-103 To see code references for more complex checks (that can receive parameters etc.), check out any of your favorite checks from our `API Reference <../../../api/deepchecks.tabular.checks.html>`__. .. GENERATED FROM PYTHON SOURCE LINES 105-116 Check Display ============= Most of the times we will want our checks to have a visual display that will quickly summarize the check result. We can pass objects for display to the ``CheckResult``. Objects for display should be of type: html string, dataframe or a function that plots a graph. Let's define a graph that will be displayed using ``matplotlib``. In order to use ``matplotlib`` we have to implement the code inside a function and not call it directly in the check, this is due to architectural limitations of ``matplotlib``. *Good to know: ``display`` can receive a single object to display or a list of objects* .. GENERATED FROM PYTHON SOURCE LINES 116-144 .. code-block:: default import matplotlib.pyplot as plt from deepchecks.core import CheckResult from deepchecks.tabular import Context, Dataset, TrainTestCheck class DatasetSizeComparison(TrainTestCheck): """Check which compares the sizes of train and test datasets.""" def run_logic(self, context: Context) -> CheckResult: ## Check logic train_size = context.train.n_samples test_size = context.test.n_samples ## Create the check result value sizes = {'Train': train_size, 'Test': test_size} sizes_df_for_display = pd.DataFrame(sizes, index=['Size']) ## Display function of matplotlib graph: def graph_display(): plt.bar(sizes.keys(), sizes.values(), color='green') plt.xlabel("Dataset") plt.ylabel("Size") plt.title("Datasets Size Comparison") return CheckResult(sizes, display=[sizes_df_for_display, graph_display]) .. GENERATED FROM PYTHON SOURCE LINES 145-146 Let us check it out .. GENERATED FROM PYTHON SOURCE LINES 146-149 .. code-block:: default DatasetSizeComparison().run(train_dataset, test_dataset) .. raw:: html
Dataset Size Comparison


.. GENERATED FROM PYTHON SOURCE LINES 150-175 Voila! ------ Now we have a check that prints a graph and has a value. We can add this check to any Suite and it will run within it. The next possible step is to implement a condition, which will allow us to give the check result a pass / fail mark. To do so, check out `the following guide <../../../user-guide/general/customizations/examples/plot_configure_check_conditions.html#add-a-custom-condition>`__. Base Checks Types ----------------- There are a number of different ``BaseCheck`` Classes to inherit from. Each base check is differed by the objects it requires in order to run, and their sole difference is the ``run`` method's signature. +---------------------------+--------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+ | Check | ``run`` Signature | Notes | +---------------------------+--------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+ |``SingleDatasetBaseCheck`` |``run(self, dataset, model=None)`` | When used in a suite you can choose whether to run on the test dataset, the train dataset or on both | +---------------------------+--------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+ |``TrainTestBaseCheck`` |``run(self, train_dataset, test_dataset, model=None)`` | | +---------------------------+--------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+ |``ModelOnlyBaseCheck`` |``run(self, model)`` | | +---------------------------+--------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+ |``ModelComparisonCheck`` |``run(self, List[train_dataset], List[test_dataset], List[model])`` | | +---------------------------+--------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------+ .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.122 seconds) .. _sphx_glr_download_user-guide_tabular_auto_tutorials_plot_add_a_custom_check.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_add_a_custom_check.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_add_a_custom_check.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_