.. _vision__custom_check_templates: ====================== Custom Check Templates ====================== This page supplies templates for the different types of custom checks that you can create using the deepchecks package. For more information on custom checks, please see the :doc:`Custom Check Guide. ` Templates: * `Single Dataset Check <#single-dataset-check>`__ * `Train Test Check <#train-test-check>`__ * `Model Only Check <#model-only-check>`__ Single Dataset Check -------------------------- Check type for cases when running on a single dataset and optional model, for example integrity checks. When in suite if 2 datasets are supplied it will run on both independently. .. code-block:: from deepchecks.core import CheckResult, ConditionCategory, ConditionResult, DatasetKind from deepchecks.vision import SingleDatasetCheck, Context, VisionData, Batch class SingleDatasetCustomCheck(SingleDatasetCheck): """Description of the check. The name of the check will be the class name split by upper case letters.""" # OPTIONAL: we can add different properties in the init def __init__(self, prop_a: str, prop_b: str, **kwargs): super().__init__(**kwargs) self.prop_a = prop_a self.prop_b = prop_b def initialize_run(self, context: Context, dataset_kind: DatasetKind): # Initialize cache self.cache = {} # OPTIONAL: add validations on inputs and properties like prop_a and prop_b def update(self, context: Context, batch: BatchWrapper, dataset_kind: DatasetKind): # Get the VisionData by its type (train/test) dataset: VisionData = context.get_data_by_kind(dataset_kind) # Take from the batch the data I need it and save it on the cache batch_data_dict = some_calc_on_batch(batch, dataset) # Save the data on the cache self.cache.update(batch_data_dict) def compute(self, context: Context, dataset_kind: DatasetKind) -> CheckResult: # LOGIC HERE failing_samples = some_calc_on_cache(self.cache, self.prop_a, self.prop_b) # Define result value: Adding any info that we might want to know later result = { 'ratio': len(failing_samples) / len(self.cache), 'indices': failing_samples.keys() } # Define result display: list of either plotly-figure/dataframe/html display = None return CheckResult(result, display=display) # OPTIONAL: add condition to check def add_condition_ratio_less_than(self, threshold: float = 0.01): # Define condition function: the function accepts as input the result value we defined in the run_logic def condition(result): ratio = result['ratio'] category = ConditionCategory.PASS if ratio < threshold else ConditionCategory.FAIL message = f'Found X ratio of {ratio}' return ConditionResult(category, message) # Define the name of the condition name = f'Custom check ratio is less than {threshold}' # Now add it on the class instance return self.add_condition(name, condition) Train Test Check ----------------- Check type for cases when running on two datasets and optional model, for example drift checks. .. code-block:: from deepchecks.core import CheckResult, ConditionCategory, ConditionResult, DatasetKind from deepchecks.vision import TrainTestCheck, Context, VisionData, Batch class SingleDatasetCustomCheck(TrainTestCheck): """Description of the check. The name of the check will be the class name split by upper case letters.""" # OPTIONAL: we can add different properties in the init def __init__(self, prop_a: str, prop_b: str, **kwargs): super().__init__(**kwargs) self.prop_a = prop_a self.prop_b = prop_b def initialize_run(self, context: Context): # Initialize cache self.cache = { DatasetKind.TRAIN: {}, DatasetKind.TEST: {} } # OPTIONAL: add validations on inputs and properties like prop_a and prop_b def update(self, context: Context, batch: BatchWrapper, dataset_kind: DatasetKind): # Get the VisionData by its type (train/test) dataset: VisionData = context.get_data_by_kind(dataset_kind) # Take from the batch the data I need it and save it on the cache batch_data_dict = some_calc_on_batch(batch, dataset) # Save the data on the cache self.cache[dataset_kind].update(batch_data_dict) def compute(self, context: Context) -> CheckResult: # Get the VisionData train_vision_data: VisionData = context.train test_vision_data: VisionData = context.test # LOGIC HERE failing_samples = some_calc_on_cache(self.cache, self.prop_a, self.prop_b) # Define result value: Adding any info that we might want to know later result = { 'ratio': len(failing_samples) / len(self.cache), 'indices': failing_samples.keys() } # Define result display: list of either plotly-figure/dataframe/html display = None return CheckResult(result, display=display) # OPTIONAL: add condition to check def add_condition_ratio_less_than(self, threshold: float = 0.01): # Define condition function: the function accepts as input the result value we defined in the run_logic def condition(result): ratio = result['ratio'] category = ConditionCategory.PASS if ratio < threshold else ConditionCategory.FAIL message = f'Found X ratio of {ratio}' return ConditionResult(category, message) # Define the name of the condition name = f'Custom check ratio is less than {threshold}' # Now add it on the class instance return self.add_condition(name, condition) Model Only Check ------------------- Check type for cases when running only on a model, for example model parameters check. .. code-block:: from deepchecks.core import CheckResult, ConditionCategory, ConditionResult from deepchecks.vision import ModelOnlyCheck, Context class ModelOnlyCustomCheck(ModelOnlyCheck): """Description of the check. The name of the check will be the class name split by upper case letters.""" # OPTIONAL: we can add different properties in the init def __init__(self, prop_a: str, prop_b: str, **kwargs): super().__init__(**kwargs) self.prop_a = prop_a self.prop_b = prop_b def compute(self, context: Context) -> CheckResult: # Get the model model = context.model # LOGIC HERE - possible to add validations on inputs and properties like prop_a and prop_b some_score = some_calc_fn(model, self.prop_a, self.prop_b) # Define result value: Adding any info that we might want to know later result = some_score # Define result display: list of either plotly-figure/dataframe/html, or Nothing if we have no display display = None return CheckResult(result, display=display) # OPTIONAL: add condition to check def add_condition_score_more_than(self, threshold: float = 1): # Define condition function: the function accepts as input the result value we defined in the run_logic def condition(result): category = ConditionCategory.PASS if result > 1 else ConditionCategory.FAIL message = f'Found X score of {result}' return ConditionResult(category, message) # Define the name of the condition name = f'Custom check score is more than {threshold}' # Now add it on the class instance return self.add_condition(name, condition)