load_dataset#
- load_dataset(day_index: int = 0, batch_size: int = 32, num_workers: int = 0, pin_memory: bool = True, shuffle: bool = False, object_type: Literal['VisionData', 'DataLoader'] = 'DataLoader') Union[DataLoader, VisionData] [source]#
Get the mask dataset and return a dataloader.
- Parameters
- day_indexint, default: 0
Select the index of the day that should be loaded. 0 is the training set, and each subsequent number is a subsequent day in the production dataset. Last day index is 59.
- batch_sizeint, default: 32
Batch size for the dataloader.
- num_workersint, default: 0
Number of workers for the dataloader.
- shufflebool, default: False
Whether to shuffle the dataset.
- pin_memorybool, default: True
If
True
, the data loader will copy Tensors into CUDA pinned memory before returning them.- object_typeLiteral[‘Dataset’, ‘DataLoader’], default: ‘DataLoader’
type of the return value. If ‘Dataset’,
deepchecks.vision.VisionData
will be returned, otherwisetorch.utils.data.DataLoader
- Returns
- Union[DataLoader, VisionDataset]
A DataLoader or VisionDataset instance representing mask dataset