.. _nlp__textdata_object: =================== The TextData Object =================== The :class:`TextData ` is a container for your textual data, labels, and relevant metadata for NLP tasks and is a basic building block in the ``deepchecks.nlp`` subpackage. In order to use any functionality of the ``deepchecks.nlp`` subpackage, you need to first create a ``TextData`` object. The ``TextData`` object enables easy access to metadata, embeddings and properties relevant for training and validating ML models. Class Properties ================== The main properties are: - **raw_text** - The raw text data, a list of strings representing the raw text of each sample. Each sample can be a sentence, paragraph, or a document, depending on the task. - **label** - The labels for the text data samples. - **task_type** - The task type, see the :ref:`Supported Tasks Guide ` for more information. TextData API Reference ------------------------- .. currentmodule:: deepchecks.nlp.text_data .. autosummary:: TextData Creating a TextData ======================= The default ``TextData`` constructor expects to get a sequence of raw text strings or tokenized text. The rest of the arguments are optional, but if you have labels for your data you would want to define them in the constructor, as many checks require the dataset labels in order to run. .. admonition:: Defining task_type :class: attention If you define labels, you must also define the ``task_type`` so deepchecks will know how to parse the labels. >>> raw_text = ["This is an example.", "Another example here."] >>> labels = ["positive", "negative"] >>> task_type = "text_classification" >>> text_data = TextData(raw_text=raw_text, label=labels, task_type=task_type) Tokenized Text ---------------- If you have tokenized text, you can also create a TextData object from it rather than using the ``raw_text`` argument: >>> # A tokenized example with named entities and locations >>> tokenized_text = [["Dan", "lives", "in", "New", "York", "."], ["He", "works", "at", "Google", "."]] >>> labels = [["B-PER", "O", "O", "B-LOC", "I-LOC", "O"], ["O", "O", "O", "B-ORG", "O"]] >>> text_data = TextData(tokenized_text=tokenized_text, label=labels, task_type=task_type) If you're running deepchecks on a token classification task it is recommended to use that argument instead of the ``raw_text`` argument. If you did pass ``raw_text`` to the constructor, deepchecks will break the text into tokens for you, using the default python ``str.split()`` method to split the text into tokens. Useful Functions =================== Calculate Default Properties ----------------------------- To calculate all the default properties, you do not need to pass the ``include_properties`` parameter in the ``calculate_builtin_properties`` function. If you pass either ``include_properties`` or ``ignore_properties`` parameter then only the properties specified will be calculated or ignored. You can calculate the default text properties for the TextData object using: >>> text_data.calculate_builtin_properties() To learn more about how deepchecks uses properties and how you can calculate or set them yourself, see the :ref:`Text Properties Guide `. Add Metadata ------------- You can add metadata to the TextData object: >>> text_data.set_metadata(metadata_df, categorical_metadata_columns) To learn more about how deepchecks uses metadata, see the :ref:`Text Metadata Guide `. Sample ------ You can sample a subset of the TextData object: >>> text_data.sample(10000) Working with Class Parameters --------------------------------- You can work directly with the ``TextData`` object, to inspect its defined raw text, tokenized text, and label: >>> text_data.raw_text ["This is an example.", "Another example here."] >>> text_data.tokenized_text [["This", "is", "an", "example."], ["Another", "example", "here."]] >>> text_data.label ["positive", "negative"] Get its internal metadata and properties DataFrames: >>> text_data.metadata >>> text_data.properties