Note
Go to the end to download the full example code
Special Characters#
This notebook provides an overview for using and understanding the Special Characters check.
Structure:
What is the Special Characters check#
The SpecialCharacters
check search in column[s] for values that contains only special characters.
import pandas as pd
from deepchecks.tabular.checks import SpecialCharacters
Generate Data#
data = {'col1': [' ', '!', '"', '#', '$', '%', '&', '\'','(', ')',
'*', '+', ',', '-', '.', '/', ':', ';', '<', '=',
'>', '?', '@', '[', ']', '\\', '^', '_', '`', '{',
'}', '|', '~', '\n'],
'col2':['v', 'v', 'v', 'v4', 'v5', 'v6', 'v7', 'v8','v9','v10',
'*', '+', ',', '-', '.', '/', ':', ';', '<', '=',
'>', '?', '@', '[', ']', '\\', '^', '_', '`', '{',
'}', '|', '~', '\n'],
'col3': [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,'???#',1,1,1,1,1,1,1,1,1,1,1],
'col4': [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1],
'col5': ['valid1','valid2','valid3','valid4','valid5','valid6','valid7',
'valid8','valid9','valid10','valid11','valid12',
'valid13','valid14','inval!d15','valid16','valid17','valid18',
'valid19','valid20','valid21','valid22','valid23','valid24','valid25',
'valid26', 'valid27','valid28','valid29','valid30','valid31','32','33','34']}
dataframe = pd.DataFrame(data=data)
Run the check#
SpecialCharacters().run(dataframe)
Total running time of the script: (0 minutes 0.026 seconds)