Special Characters#

This notebook provides an overview for using and understanding the Special Characters check.

Structure:

What is the Special Characters check#

The SpecialCharacters check search in column[s] for values that contains only special characters.

import pandas as pd

from deepchecks.tabular.checks import SpecialCharacters

Generate Data#

data = {'col1': [' ', '!', '"', '#', '$', '%', '&', '\'','(', ')',
                 '*', '+', ',', '-', '.', '/', ':', ';', '<', '=',
                 '>', '?', '@', '[', ']', '\\', '^', '_', '`', '{',
                 '}', '|', '~', '\n'],
        'col2':['v', 'v', 'v', 'v4', 'v5', 'v6', 'v7', 'v8','v9','v10',
                 '*', '+', ',', '-', '.', '/', ':', ';', '<', '=',
                 '>', '?', '@', '[', ']', '\\', '^', '_', '`', '{',
                 '}', '|', '~', '\n'],
        'col3': [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,'???#',1,1,1,1,1,1,1,1,1,1,1],
        'col4': [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1],
        'col5': ['valid1','valid2','valid3','valid4','valid5','valid6','valid7',
                 'valid8','valid9','valid10','valid11','valid12',
                'valid13','valid14','inval!d15','valid16','valid17','valid18',
                 'valid19','valid20','valid21','valid22','valid23','valid24','valid25',
                'valid26', 'valid27','valid28','valid29','valid30','valid31','32','33','34']}

dataframe = pd.DataFrame(data=data)

Run the check#

SpecialCharacters().run(dataframe)
Special Characters


Total running time of the script: (0 minutes 0.026 seconds)

Gallery generated by Sphinx-Gallery