calculate_feature_importance#

calculate_feature_importance(model: Any, dataset: Union[Dataset, DataFrame], force_permutation: bool = False, permutation_kwargs: Optional[Dict[str, Any]] = None) Tuple[Series, str][source]#

Calculate features effect on the label.

Parameters
modelt.Any

a fitted model

datasett.Union[‘tabular.Dataset’, pd.DataFrame]

dataset used to fit the model

force_permutationbool, default: False

force permutation importance calculation

permutation_kwargst.Dict[str, t.Any] , default: None

kwargs for permutation importance calculation

Returns
Tuple[Series, str]:

first item - feature importance normalized to 0-1 indexed by feature names, second item - type of feature importance calculation (types: permutation_importance, feature_importances_, coef_)

Raises
NotFittedError

Call ‘fit’ with appropriate arguments before using this estimator.

DeepchecksValueError

if model validation failed. if it was not possible to calculate features importance.

NumberOfFeaturesLimitError

if the number of features limit were exceeded.