Note
Click here to download the full example code
Class Performance#
This notebooks provides an overview for using and understanding the class performance check.
Structure:
What Is the Purpose of the Check?#
The class performance check evaluates several metrics on the given model and data and returns all of the results in a single check. The check uses the following default metrics:
Task Type |
Property name |
---|---|
Classification |
Precision |
Classification |
Recall |
Object Detection |
|
Object Detection |
In addition to the default metrics, the check supports custom metrics that should be implemented using the torch.ignite.Metric API. These can be passed as a list using the alternative_metrics parameter of the check, which will override the default metrics.
Imports#
from deepchecks.vision.checks import ClassPerformance
from deepchecks.vision.datasets.classification import mnist
Classification Performance Report#
Generate data and model:#
mnist_model = mnist.load_model()
train_ds = mnist.load_dataset(train=True, object_type='VisionData')
test_ds = mnist.load_dataset(train=False, object_type='VisionData')
Run the check#
check = ClassPerformance()
check.run(train_ds, test_ds, mnist_model)
Out:
Validating Input:
| | 0/1 [00:00<?, ? /s]
Validating Input:
|#####| 1/1 [00:00<00:00, 4.92 /s]
Validating Input:
|#####| 1/1 [00:00<00:00, 4.92 /s]
Ingesting Batches - Train Dataset:
| | 0/157 [00:00<?, ? Batch/s]
Ingesting Batches - Train Dataset:
|######### | 9/157 [00:00<00:01, 85.51 Batch/s]
Ingesting Batches - Train Dataset:
|################### | 19/157 [00:00<00:01, 90.62 Batch/s]
Ingesting Batches - Train Dataset:
|############################9 | 29/157 [00:00<00:01, 88.04 Batch/s]
Ingesting Batches - Train Dataset:
|####################################### | 39/157 [00:00<00:01, 90.18 Batch/s]
Ingesting Batches - Train Dataset:
|################################################# | 49/157 [00:00<00:01, 91.45 Batch/s]
Ingesting Batches - Train Dataset:
|########################################################### | 59/157 [00:00<00:01, 92.34 Batch/s]
Ingesting Batches - Train Dataset:
|##################################################################### | 69/157 [00:00<00:00, 89.20 Batch/s]
Ingesting Batches - Train Dataset:
|############################################################################## | 78/157 [00:00<00:00, 86.85 Batch/s]
Ingesting Batches - Train Dataset:
|####################################################################################### | 87/157 [00:00<00:00, 85.00 Batch/s]
Ingesting Batches - Train Dataset:
|################################################################################################ | 96/157 [00:01<00:00, 84.76 Batch/s]
Ingesting Batches - Train Dataset:
|######################################################################################################### | 105/157 [00:01<00:00, 84.95 Batch/s]
Ingesting Batches - Train Dataset:
|##################################################################################################################9 | 115/157 [00:01<00:00, 87.30 Batch/s]
Ingesting Batches - Train Dataset:
|############################################################################################################################ | 124/157 [00:01<00:00, 87.25 Batch/s]
Ingesting Batches - Train Dataset:
|##################################################################################################################################### | 133/157 [00:01<00:00, 87.71 Batch/s]
Ingesting Batches - Train Dataset:
|############################################################################################################################################## | 142/157 [00:01<00:00, 86.54 Batch/s]
Ingesting Batches - Train Dataset:
|####################################################################################################################################################### | 151/157 [00:01<00:00, 84.46 Batch/s]
Ingesting Batches - Train Dataset:
|#############################################################################################################################################################| 157/157 [00:01<00:00, 84.46 Batch/s]
Ingesting Batches - Test Dataset:
| | 0/10 [00:00<?, ? Batch/s]
Ingesting Batches - Test Dataset:
|# | 1/10 [00:00<00:01, 6.29 Batch/s]
Ingesting Batches - Test Dataset:
|## | 2/10 [00:00<00:01, 6.47 Batch/s]
Ingesting Batches - Test Dataset:
|### | 3/10 [00:00<00:01, 6.60 Batch/s]
Ingesting Batches - Test Dataset:
|#### | 4/10 [00:00<00:00, 6.48 Batch/s]
Ingesting Batches - Test Dataset:
|##### | 5/10 [00:00<00:00, 6.54 Batch/s]
Ingesting Batches - Test Dataset:
|###### | 6/10 [00:00<00:00, 6.37 Batch/s]
Ingesting Batches - Test Dataset:
|####### | 7/10 [00:01<00:00, 6.17 Batch/s]
Ingesting Batches - Test Dataset:
|######## | 8/10 [00:01<00:00, 6.07 Batch/s]
Ingesting Batches - Test Dataset:
|######### | 9/10 [00:01<00:00, 6.20 Batch/s]
Ingesting Batches - Test Dataset:
|##########| 10/10 [00:01<00:00, 6.28 Batch/s]
Ingesting Batches - Test Dataset:
|##########| 10/10 [00:01<00:00, 6.28 Batch/s]
Computing Check:
| | 0/1 [00:00<?, ? Check/s]
Computing Check:
|#####| 1/1 [00:00<00:00, 9.46 Check/s]
Computing Check:
|#####| 1/1 [00:00<00:00, 9.46 Check/s]
Object Detection Class Performance#
For object detection tasks - the default metric that is being calculated it the Average Precision. The definition of the Average Precision is identical to how the COCO dataset defined it - mean of the average precision per class, over the range [0.5, 0.95, 0.05] of IoU thresholds.
from deepchecks.vision.datasets.detection import coco
Generate Data and Model#
We generate a sample dataset of 128 images from the COCO dataset, and using the YOLOv5 model.
yolo = coco.load_model(pretrained=True)
train_ds = coco.load_dataset(train=True, object_type='VisionData')
test_ds = coco.load_dataset(train=False, object_type='VisionData')
Run the check#
check = ClassPerformance(show_only='best')
check.run(train_ds, test_ds, yolo)
Out:
Validating Input:
| | 0/1 [00:00<?, ? /s]
Validating Input:
|#####| 1/1 [00:17<00:00, 17.70s/ ]
Validating Input:
|#####| 1/1 [00:17<00:00, 17.70s/ ]
Ingesting Batches - Train Dataset:
| | 0/2 [00:00<?, ? Batch/s]
Ingesting Batches - Train Dataset:
|##5 | 1/2 [00:08<00:08, 8.97s/ Batch]
Ingesting Batches - Train Dataset:
|#####| 2/2 [00:17<00:00, 8.97s/ Batch]
Ingesting Batches - Train Dataset:
|#####| 2/2 [00:17<00:00, 8.97s/ Batch]
Ingesting Batches - Test Dataset:
| | 0/2 [00:00<?, ? Batch/s]
Ingesting Batches - Test Dataset:
|##5 | 1/2 [00:08<00:08, 8.91s/ Batch]
Ingesting Batches - Test Dataset:
|#####| 2/2 [00:17<00:00, 8.84s/ Batch]
Ingesting Batches - Test Dataset:
|#####| 2/2 [00:17<00:00, 8.84s/ Batch]
Computing Check:
| | 0/1 [00:00<?, ? Check/s]
Computing Check:
|#####| 1/1 [00:00<00:00, 1.42 Check/s]
Computing Check:
|#####| 1/1 [00:00<00:00, 1.42 Check/s]
Define a Condition#
We can also define a condition to validate that our model performance is above a certain threshold. The condition is defined as a function that takes the results of the check as input and returns a ConditionResult object.
check = ClassPerformance(show_only='worst')
check.add_condition_test_performance_not_less_than(0.2)
result = check.run(train_ds, test_ds, yolo)
result
Out:
Validating Input:
| | 0/1 [00:00<?, ? /s]
Validating Input:
|#####| 1/1 [00:17<00:00, 17.68s/ ]
Validating Input:
|#####| 1/1 [00:17<00:00, 17.68s/ ]
Ingesting Batches - Train Dataset:
| | 0/2 [00:00<?, ? Batch/s]
Ingesting Batches - Train Dataset:
|##5 | 1/2 [00:09<00:09, 9.03s/ Batch]
Ingesting Batches - Train Dataset:
|#####| 2/2 [00:17<00:00, 8.95s/ Batch]
Ingesting Batches - Train Dataset:
|#####| 2/2 [00:17<00:00, 8.95s/ Batch]
Ingesting Batches - Test Dataset:
| | 0/2 [00:00<?, ? Batch/s]
Ingesting Batches - Test Dataset:
|##5 | 1/2 [00:09<00:09, 9.06s/ Batch]
Ingesting Batches - Test Dataset:
|#####| 2/2 [00:17<00:00, 8.94s/ Batch]
Ingesting Batches - Test Dataset:
|#####| 2/2 [00:17<00:00, 8.94s/ Batch]
Computing Check:
| | 0/1 [00:00<?, ? Check/s]
Computing Check:
|#####| 1/1 [00:00<00:00, 1.58 Check/s]
Computing Check:
|#####| 1/1 [00:00<00:00, 1.58 Check/s]
We detected that for several classes our model performance is below the threshold.
Total running time of the script: ( 1 minutes 53.046 seconds)