Custom Task Tutorial#

Computer vision is an umbrella term for a wide spectrum of objectives models are trained for. These objective reflect on the structure of the data and the possible actions on it.

The first step before running any Deepchecks checks is to create an implementation of deepchecks.vision.vision_data.vision_data.VisionData. Each implementation represents and standardize a computer vision task and allows to run a more complex checks which relates to the given task’s characteristics. There are default base classes for a few known tasks like classification, object detection, and semantic segmentation however not all tasks have a base implementation, meaning you will have to create your own task.

When creating your own task you will be limited to run checks which are agnostic to the specific task type. For example performance checks that uses IOU works only on object detection tasks, since they need to know the exact bounding box format in order to run, while other checks that uses Vision Properties or custom metrics are agnostic to the task type.

In this guide we will implement a custom instance segmentation task and run checks on it. Note that instance segmentation is different from semantic segmentation, which is currently supported in Deepchecks.

  1. Defining the Data

  2. Implement Custom Task

  3. Implement Custom Properties

  4. Implement Custom Metric

Defining the Data#

First we will define a PyTorch Dataset. of COCO-128 segmentation task. This part represents your own code, and is not yet Deepchecks related.

import contextlib
import os
import typing as t
from pathlib import Path

import albumentations as A
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision.transforms.functional as F
from albumentations.pytorch.transforms import ToTensorV2
from PIL import Image, ImageDraw
from torch.utils.data import DataLoader
from torchvision.datasets import VisionDataset
from torchvision.datasets.utils import download_and_extract_archive
from torchvision.utils import draw_segmentation_masks


class CocoInstanceSegmentationDataset(VisionDataset):
    """An instance of PyTorch VisionData the represents the COCO128-segments dataset.

    Parameters
    ----------
    root : str
        Path to the root directory of the dataset.
    name : str
        Name of the dataset.
    train : bool
        if `True` train dataset, otherwise test dataset
    transforms : Callable, optional
        A function/transform that takes in an PIL image and returns a transformed version.
        E.g, transforms.RandomCrop
    """

    TRAIN_FRACTION = 0.5

    def __init__(self, root: str, name: str, train: bool = True, transforms: t.Optional[t.Callable] = None, ) -> None:
        super().__init__(root, transforms=transforms)

        self.train = train
        self.root = Path(root).absolute()
        self.images_dir = Path(root) / 'images' / name
        self.labels_dir = Path(root) / 'labels' / name

        images: t.List[Path] = sorted(self.images_dir.glob('./*.jpg'))
        labels: t.List[t.Optional[Path]] = []

        for image in images:
            label = self.labels_dir / f'{image.stem}.txt'
            labels.append(label if label.exists() else None)

        assert len(images) != 0, 'Did not find folder with images or it was empty'
        assert not all(l is None for l in labels), 'Did not find folder with labels or it was empty'

        train_len = int(self.TRAIN_FRACTION * len(images))

        if self.train is True:
            self.images = images[0:train_len]
            self.labels = labels[0:train_len]
        else:
            self.images = images[train_len:]
            self.labels = labels[train_len:]

    def __getitem__(self, idx: int) -> t.Tuple[Image.Image, np.ndarray]:
        """Get the image and label at the given index."""
        image = Image.open(str(self.images[idx]))
        label_file = self.labels[idx]

        masks = []
        if label_file is not None:
            for label_str in label_file.open('r').read().strip().splitlines():
                label = np.array(label_str.split(), dtype=np.float32)
                class_id = int(label[0])
                # Transform normalized coordinates to un-normalized
                coordinates = (label[1:].reshape(-1, 2) * np.array([image.width, image.height])).reshape(-1).tolist()
                # Create mask image
                mask = Image.new('L', (image.width, image.height), 0)
                ImageDraw.Draw(mask).polygon(coordinates, outline=1, fill=1)
                # Add to list
                masks.append(np.array(mask, dtype=bool))

        if self.transforms is not None:
            # Albumentations accepts images as numpy
            transformed = self.transforms(image=np.array(image), masks=masks if masks else None)
            image = transformed['image']
            masks = transformed['masks']
            # Transform masks to tensor of (num_masks, H, W)
            if masks:
                if isinstance(masks[0], np.ndarray):
                    masks = [torch.from_numpy(m) for m in masks]
                masks = torch.stack(masks)
            else:
                masks = torch.empty((0, 3))

        return image, masks

    def __len__(self):
        return len(self.images)

    @classmethod
    def load_or_download(cls, root: Path, train: bool) -> 'CocoInstanceSegmentationDataset':
        extract_dir = root / 'coco128segments'
        coco_dir = root / 'coco128segments' / 'coco128-seg'
        folder = 'train2017'

        if not coco_dir.exists():
            url = 'https://ultralytics.com/assets/coco128-segments.zip'

            with open(os.devnull, 'w', encoding='utf8') as f, contextlib.redirect_stdout(f):
                download_and_extract_archive(url, download_root=str(root), extract_root=str(extract_dir))

            try:
                # remove coco128's README.txt so that it does not come in docs
                os.remove("coco128/README.txt")
            except:
                pass
        return CocoInstanceSegmentationDataset(coco_dir, folder, train=train, transforms=A.Compose([ToTensorV2()]))


# Download and load the datasets
train_ds = CocoInstanceSegmentationDataset.load_or_download(Path('..'), train=True)
test_ds = CocoInstanceSegmentationDataset.load_or_download(Path('..'), train=False)
  0%|          | 0/7119623 [00:00<?, ?it/s]
100%|██████████| 7119623/7119623 [00:00<00:00, 230943073.90it/s]

Visualizing that we loaded our datasets correctly:

masked_images = [draw_segmentation_masks(train_ds[i][0], masks=train_ds[i][1], alpha=0.7) for i in range(5)]

fig, axs = plt.subplots(ncols=len(masked_images), figsize=(20, 20))
for i, img in enumerate(masked_images):
    img = img.detach()
    img = F.to_pil_image(img)
    axs[i].imshow(np.asarray(img))
    axs[i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])

fig.show()
plot custom task tutorial

Implementing the VisionData class#

The checks in the package validate the data by calculating various quantities over the data, labels and predictions (when available). In order to do that, those must be in a pre-defined format, according to the task type.

In the following example we’re using pytorch. To see how this can be done using tensorflow or a generic generator, please refer to The Vision Data Class guide.

For pytorch, we will use our DataLoader, but we’ll create a new collate function for it, that transforms the batch to the correct format. Then, we’ll create a deepchecks.vision.vision_data.vision_data.VisionData object, that will hold the data loader.

For a custom task, only the images have a pre-defined format while the labels and predictions can arrive in any format. To learn more about the expected formats for the different tasks please visit Supported Tasks and Formats guide.

from deepchecks.vision import VisionData, BatchOutputFormat


def deepchecks_collate_fn(batch) -> BatchOutputFormat:
    """Return a batch of images, labels and predictions for a batch of data. The expected format is a dictionary with
    the following keys: 'images', 'labels' and 'predictions', each value is in the deepchecks format for the task.
    You can also use the BatchOutputFormat class to create the output.
    """
    # batch received as iterable of tuples of (image, label) and transformed to tuple of iterables of images and labels:
    batch = tuple(zip(*batch))

    images = [tensor.numpy().transpose((1, 2, 0)) for tensor in batch[0]]
    labels = batch[1]
    return BatchOutputFormat(images=images, labels=labels)

The label_map is a dictionary that maps the class id to the class name, for display purposes.

LABEL_MAP = {0: 'background', 1: 'airplane', 2: 'bicycle', 3: 'bird', 4: 'boat', 5: 'bottle', 6: 'bus', 7: 'car',
             8: 'cat', 9: 'chair', 10: 'cow', 11: 'dining table', 12: 'dog', 13: 'horse', 14: 'motorcycle',
             15: 'person', 16: 'potted plant', 17: 'sheep', 18: 'couch', 19: 'train', 20: 'tv'}

Now that we have our updated collate function, we can create the dataloader in the deepchecks format, and use it to create a VisionData object. For custom tasks, we set the task type to ‘other’:

train_loader = DataLoader(dataset=train_ds, batch_size=16, shuffle=False, collate_fn=deepchecks_collate_fn)
test_loader = DataLoader(dataset=test_ds, batch_size=16, shuffle=False, collate_fn=deepchecks_collate_fn)

train_vision_data = VisionData(batch_loader=train_loader, task_type='other', label_map=LABEL_MAP)
test_vision_data = VisionData(batch_loader=test_loader, task_type='other', label_map=LABEL_MAP)

Running Checks#

After the vision data objects were created, we can run checks on them. For custom tasks, since the images are in the standard Deepchecks format, we can run image based checks without additional effort. Let’s run the ImagePropertyDrift check with our task:

from deepchecks.vision.checks import ImagePropertyDrift

result = ImagePropertyDrift().run(train_vision_data, test_vision_data)
result.show()
Processing Train Batches:
|     | 0/1 [Time: 00:00]
Processing Train Batches:
|█████| 1/1 [Time: 00:00]
Processing Train Batches:
|█████| 1/1 [Time: 00:00]

Processing Test Batches:
|     | 0/1 [Time: 00:00]

Processing Test Batches:
|█████| 1/1 [Time: 00:00]

Processing Test Batches:
|█████| 1/1 [Time: 00:00]


Computing Check:
|     | 0/1 [Time: 00:00]


Computing Check:
|█████| 1/1 [Time: 00:00]


Computing Check:
|█████| 1/1 [Time: 00:00]
Image Property Drift


Now in order to run additional checks, we’ll need to define custom properties or metrics.

Implement Custom Properties#

In order to run checks that are using label or prediction properties we’ll have to implement a custom property. We’ll write label properties and run the label drift check.

from deepchecks.vision.checks import LabelDrift


def number_of_detections(labels) -> t.List[int]:
    """Return a list containing the number of detections per sample in batch."""
    return [masks_per_image.shape[0] for masks_per_image in labels]


# We will pass this object as parameter to checks that are using label properties
label_properties = [{'name': '# Detections per image', 'method': number_of_detections, 'output_type': 'numerical'}]
check = LabelDrift(label_properties=label_properties)
result = check.run(train_vision_data, test_vision_data)
result.show()
Processing Train Batches:
|     | 0/1 [Time: 00:00]
Processing Train Batches:
|█████| 1/1 [Time: 00:00]
Processing Train Batches:
|█████| 1/1 [Time: 00:00]

Processing Test Batches:
|     | 0/1 [Time: 00:00]

Processing Test Batches:
|█████| 1/1 [Time: 00:00]

Processing Test Batches:
|█████| 1/1 [Time: 00:00]


Computing Check:
|     | 0/1 [Time: 00:00]


Computing Check:
|█████| 1/1 [Time: 00:00]
Label Drift


Implement Custom Metric#

Some checks test the model performance and requires a metric in order to run. When using a custom task you will also have to create a custom metric in order for those checks to work, since the Deepchecks’ built-in metrics don’t know to handle custom data formats. See link for additional information on how to create a custom metric.

Total running time of the script: (0 minutes 2.896 seconds)

Gallery generated by Sphinx-Gallery