UnusedFeatures.run#

UnusedFeatures.run(train_dataset: Dataset, test_dataset: Dataset, model: Optional[BasicModel] = None, feature_importance_force_permutation: bool = False, feature_importance_timeout: Optional[int] = None) CheckResult[source]#

Run the check.

Parameters
train_datasetDataset

dataset representing data an estimator was fitted on

test_datasetDataset

dataset representing data an estimator predicts on

modelBasicModel

A scikit-learn-compatible fitted estimator instance

feature_importance_force_permutationbool , default: False

force calculation of permutation features importance

feature_importance_timeoutint , default: None

timeout in second for the permutation features importance calculation

Returns
CheckResult

value is a dataframe with metrics as indexes, and scores per training and test in the columns. display data is a bar graph of the metrics for training and test data.

Raises
DeepchecksValueError

If neither train dataset nor test dataset exist, or either of the dataset objects are not a Dataset instance with a label.