Suite.run#

Suite.run(train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, model: Optional[Module] = None, scorers: Optional[Mapping[str, Metric]] = None, scorers_per_class: Optional[Mapping[str, Metric]] = None, device: Optional[Union[str, device]] = 'cpu', random_state: int = 42, n_samples: Optional[int] = 10000) SuiteResult[source]#

Run all checks.

Parameters
train_dataset: Optional[VisionData] , default None

object, representing data an estimator was fitted on

test_datasetOptional[VisionData] , default None

object, representing data an estimator predicts on

modelnn.Module , default None

A scikit-learn-compatible fitted estimator instance

scorersMapping[str, Metric] , default None

dict of scorers names to scorer sklearn_name/function

scorers_per_classMapping[str, Metric], default None

dict of scorers for classification without averaging of the classes See <a href= “https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel”> scikit-learn docs</a>

deviceUnion[str, torch.device], default: None

processing unit for use

random_stateint

A seed to set for pseudo-random functions

n_samplesint, default: 10,000

number of samples to draw from the dataset.

Returns
——-
SuiteResult

All results by all initialized checks