Regression Error Distribution#

Imports#

from sklearn.datasets import load_diabetes
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split

from deepchecks.tabular import Dataset
from deepchecks.tabular.checks import RegressionErrorDistribution

Generating data#

diabetes_df = load_diabetes(return_X_y=False, as_frame=True).frame
train_df, test_df = train_test_split(diabetes_df, test_size=0.33, random_state=42)

train = Dataset(train_df, label='target', cat_features=['sex'])
test = Dataset(test_df, label='target', cat_features=['sex'])

clf = GradientBoostingRegressor(random_state=0)
_ = clf.fit(train.data[train.features], train.data[train.label_name])

Running RegressionErrorDistribution check (normal distribution)#

check = RegressionErrorDistribution()
check.run(test, clf)
Regression Error Distribution


Skewing the data#

test.data[test.label_name] = 150

Running RegressionErrorDistribution check (abnormal distribution)#

check = RegressionErrorDistribution()
check.run(test, clf)
Regression Error Distribution


Total running time of the script: ( 0 minutes 0.288 seconds)

Gallery generated by Sphinx-Gallery