RegressionErrorDistribution#

class RegressionErrorDistribution[source]#

Check regression error distribution.

The check shows the distribution of the regression error, and enables to set conditions on the distribution kurtosis. Kurtosis is a measure of the shape of the distribution, helping us understand if the distribution is significantly “wider” from the normal distribution, which may imply a certain cause of error deforming the normal shape.

Parameters
n_top_samplesint , default: 3

amount of samples to show which have the largest under / over estimation errors.

n_binsint , default: 40

number of bins to use for the histogram.

__init__(n_top_samples: int = 3, n_bins: int = 40, **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

RegressionErrorDistribution.add_condition(...)

Add new condition function to the check.

RegressionErrorDistribution.add_condition_kurtosis_greater_than([...])

Add condition - require min kurtosis value to be greater than the threshold.

RegressionErrorDistribution.clean_conditions()

Remove all conditions from this check instance.

RegressionErrorDistribution.conditions_decision(result)

Run conditions on given result.

RegressionErrorDistribution.config()

Return check configuration (conditions' configuration not yet supported).

RegressionErrorDistribution.from_config(conf)

Return check object from a CheckConfig object.

RegressionErrorDistribution.metadata([...])

Return check metadata.

RegressionErrorDistribution.name()

Name of class in split camel case.

RegressionErrorDistribution.params([...])

Return parameters to show when printing the check.

RegressionErrorDistribution.remove_condition(index)

Remove given condition by index.

RegressionErrorDistribution.run(dataset[, ...])

Run check.

RegressionErrorDistribution.run_logic(...)

Run check.

Examples#