LabelPropertyOutliers#

class LabelPropertyOutliers[source]#

Find outliers labels with respect to the given properties.

The check computes several label properties and then computes the number of outliers for each property. The check uses IQR to detect outliers out of the single dimension properties.

Parameters
label_propertiesList[Dict[str, Any]], default: None

List of properties. Replaces the default deepchecks properties. Each property is dictionary with keys ‘name’ (str), ‘method’ (Callable) and ‘output_type’ (str), representing attributes of said method. ‘output_type’ must be one of: - ‘numeric’ - for continuous ordinal outputs. - ‘categorical’ - for discrete, non-ordinal outputs. These can still be numbers,

but these numbers do not have inherent value.

For more on image / label properties, see the property guide

n_show_topint , default: 5

number of outliers to show from each direction (upper limit and bottom limit)

iqr_percentiles: Tuple[int, int], default: (25, 75)

Two percentiles which define the IQR range

iqr_scale: float, default: 1.5

The scale to multiply the IQR range for the outliers detection

__init__(label_properties: Optional[List[Dict[str, Any]]] = None, n_show_top: int = 5, iqr_percentiles: Tuple[int, int] = (25, 75), iqr_scale: float = 1.5, **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

LabelPropertyOutliers.add_condition(name, ...)

Add new condition function to the check.

LabelPropertyOutliers.clean_conditions()

Remove all conditions from this check instance.

LabelPropertyOutliers.compute(context, ...)

Compute final result.

LabelPropertyOutliers.conditions_decision(result)

Run conditions on given result.

LabelPropertyOutliers.config()

Return check configuration (conditions' configuration not yet supported).

LabelPropertyOutliers.draw_image(data, ...)

Return an image to show as output of the display.

LabelPropertyOutliers.from_config(conf)

Return check object from a CheckConfig object.

LabelPropertyOutliers.get_default_properties(data)

Return default properties to run in the check.

LabelPropertyOutliers.get_relevant_data(batch)

Get the data on which the check calculates outliers for.

LabelPropertyOutliers.initialize_run(...)

Initialize the properties state.

LabelPropertyOutliers.metadata([with_doc_link])

Return check metadata.

LabelPropertyOutliers.name()

Name of class in split camel case.

LabelPropertyOutliers.params([show_defaults])

Return parameters to show when printing the check.

LabelPropertyOutliers.remove_condition(index)

Remove given condition by index.

LabelPropertyOutliers.run(dataset[, model, ...])

Run check.

LabelPropertyOutliers.update(context, batch, ...)

Aggregate image properties from batch.

Examples#