IsSingleValue#

class IsSingleValue[source]#

Check if there are columns which have only a single unique value in all rows.

Parameters
columnsUnion[Hashable, List[Hashable]] , default: None

Columns to check, if none are given checks all columns except ignored ones.

ignore_columnsUnion[Hashable, List[Hashable]] , default: None

Columns to ignore, if none given checks based on columns variable.

ignore_nanbool, default True

Whether to ignore NaN values in a column when counting the number of unique values.

__init__(columns: Optional[Union[Hashable, List[Hashable]]] = None, ignore_columns: Optional[Union[Hashable, List[Hashable]]] = None, ignore_nan: bool = True, **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

IsSingleValue.add_condition(name, ...)

Add new condition function to the check.

IsSingleValue.add_condition_not_single_value()

Add condition - no column contains only a single value.

IsSingleValue.clean_conditions()

Remove all conditions from this check instance.

IsSingleValue.conditions_decision(result)

Run conditions on given result.

IsSingleValue.config()

Return check configuration (conditions' configuration not yet supported).

IsSingleValue.from_config(conf)

Return check object from a CheckConfig object.

IsSingleValue.metadata([with_doc_link])

Return check metadata.

IsSingleValue.name()

Name of class in split camel case.

IsSingleValue.params([show_defaults])

Return parameters to show when printing the check.

IsSingleValue.remove_condition(index)

Remove given condition by index.

IsSingleValue.run(dataset[, model, ...])

Run check.

IsSingleValue.run_logic(context, dataset_kind)

Run check.

Examples#