model_evaluation#

model_evaluation(alternative_scorers: Optional[Dict[str, Callable]] = None, columns: Optional[Union[Hashable, List[Hashable]]] = None, ignore_columns: Optional[Union[Hashable, List[Hashable]]] = None, n_top_columns: Optional[int] = None, n_samples: Optional[int] = None, random_state: int = 42, n_to_show: int = 5, **kwargs) Suite[source]#

Suite for evaluating the model’s performance over different metrics, segments, error analysis, examining overfitting, comparing to baseline, and more.

List of Checks:
List of Checks#

Check Example

API Reference

plot_tabular_performance_report

PerformanceReport

ROC Report

RocReport

Confusion Matrix Report

ConfusionMatrixReport

Segment Performance

SegmentPerformance

Train Test Prediction Drift

TrainTestPredictionDrift

Simple Model Comparison

SimpleModelComparison

plot_tabular_model_error_analysis

ModelErrorAnalysis

Calibration Score

CalibrationScore

Regression Systematic Error

RegressionSystematicError

Regression Error Distribution

RegressionErrorDistribution

Unused Features

UnusedFeatures

Boosting Overfit

BoostingOverfit

Model Inference Time

ModelInferenceTime

Parameters
alternative_scorersDict[str, Callable], default: None

An optional dictionary of scorer name to scorer functions. If none given, use default scorers

columnsUnion[Hashable, List[Hashable]] , default: None

The columns to be checked. If None, all columns will be checked except the ones in ignore_columns.

ignore_columnsUnion[Hashable, List[Hashable]] , default: None

The columns to be ignored. If None, no columns will be ignored.

n_top_columnsint , optional

number of columns to show ordered by feature importance (date, index, label are first) (check dependent)

n_samplesint , default: 1_000_000

number of samples to use for checks that sample data. If none, using the default n_samples per check.

random_stateint, default: 42

random seed for all checks.

n_to_showint , default: 5

number of top results to show (check dependent)

**kwargsdict

additional arguments to pass to the checks.

Returns
Suite

A suite for evaluating the model’s performance.

Examples

>>> from deepchecks.tabular.suites import model_evaluation
>>> suite = model_evaluation(columns=['a', 'b', 'c'], n_samples=1_000_000)
>>> result = suite.run()
>>> result.show()
run(self, train_dataset: Optional[Union[Dataset, DataFrame]] = None, test_dataset: Optional[Union[Dataset, DataFrame]] = None, model: Optional[BasicModel] = None, feature_importance: Optional[Series] = None, feature_importance_force_permutation: bool = False, feature_importance_timeout: int = 120, with_display: bool = True, y_pred_train: Optional[ndarray] = None, y_pred_test: Optional[ndarray] = None, y_proba_train: Optional[ndarray] = None, y_proba_test: Optional[ndarray] = None) SuiteResult#

Run all checks.

Parameters
train_dataset: Optional[Union[Dataset, pd.DataFrame]] , default None

object, representing data an estimator was fitted on

test_datasetOptional[Union[Dataset, pd.DataFrame]] , default None

object, representing data an estimator predicts on

modelOptional[BasicModel] , default None

A scikit-learn-compatible fitted estimator instance

feature_importance: pd.Series , default: None

pass manual features importance

feature_importance_force_permutationbool , default: False

force calculation of permutation features importance

feature_importance_timeoutint , default: 120

timeout in second for the permutation features importance calculation

y_pred_train: Optional[np.ndarray] , default: None

Array of the model prediction over the train dataset.

y_pred_test: Optional[np.ndarray] , default: None

Array of the model prediction over the test dataset.

y_proba_train: Optional[np.ndarray] , default: None

Array of the model prediction probabilities over the train dataset.

y_proba_test: Optional[np.ndarray] , default: None

Array of the model prediction probabilities over the test dataset.

features_importance: Optional[pd.Series] , default: None

pass manual features importance .. deprecated:: 0.8.1

Use ‘feature_importance’ instead.

Returns
SuiteResult

All results by all initialized checks