MixedDataTypes#

class MixedDataTypes[source]#

Detect columns which contain a mix of numerical and string values.

Parameters
columnsUnion[Hashable, List[Hashable]] , default: None

Columns to check, if none are given checks all columns except ignored ones.

ignore_columnsUnion[Hashable, List[Hashable]] , default: None

Columns to ignore, if none given checks based on columns variable.

n_top_columnsint , optional

amount of columns to show ordered by feature importance (date, index, label are first)

__init__(columns: Optional[Union[Hashable, List[Hashable]]] = None, ignore_columns: Optional[Union[Hashable, List[Hashable]]] = None, n_top_columns: int = 10, **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

MixedDataTypes.add_condition(name, ...)

Add new condition function to the check.

MixedDataTypes.add_condition_rare_type_ratio_not_in_range([...])

Add condition - Whether the ratio of rarer data type (strings or numbers) is not in the "danger zone".

MixedDataTypes.clean_conditions()

Remove all conditions from this check instance.

MixedDataTypes.conditions_decision(result)

Run conditions on given result.

MixedDataTypes.config()

Return check configuration (conditions' configuration not yet supported).

MixedDataTypes.from_config(conf)

Return check object from a CheckConfig object.

MixedDataTypes.metadata([with_doc_link])

Return check metadata.

MixedDataTypes.name()

Name of class in split camel case.

MixedDataTypes.params([show_defaults])

Return parameters to show when printing the check.

MixedDataTypes.remove_condition(index)

Remove given condition by index.

MixedDataTypes.run(dataset[, model, ...])

Run check.

MixedDataTypes.run_logic(context, dataset_kind)

Run check.

Examples#