StringLengthOutOfBounds#

class StringLengthOutOfBounds[source]#

Detect strings with length that is much longer/shorter than the identified “normal” string lengths.

Parameters
columnsUnion[Hashable, List[Hashable]] , default: None

Columns to check, if none are given checks all columns except ignored ones.

ignore_columnsUnion[Hashable, List[Hashable]] , default: None

Columns to ignore, if none given checks based on columns variable

num_percentilesint , default: 1000

Number of percentiles values to retrieve for the length of the samples in the string column. Affects the resolution of string lengths that is used to detect outliers.

inner_quantile_rangeint , default: 94

The int upper percentile [0-100] defining the inner percentile range. E.g. for 98 the range would be 2%-98%.

outlier_factorint , default: 4

Strings would be defined as outliers if their length is outlier_factor times more/less than the values inside the inner quantile range.

min_length_differenceint , default: 5

The minimum length difference to be considered as outlier.

min_length_ratio_differenceint , default: 0.5

Used to calculate the minimum length difference to be considered as outlier. (calculated form this times the average of the normal lengths.)

min_unique_value_ratiofloat , default: 0.01

Min

min_unique_valuesint , default: 100

Minimum unique values in column to calculate string length outlier

n_top_columnsint , optional

amount of columns to show ordered by feature importance (date, index, label are first)

outlier_length_to_showint , default: 50

Maximum length of outlier to show in results. If an outlier is longer it is trimmed and added ‘…’

samples_per_range_to_showint , default: 3

Number of outlier samples to show in results per outlier range found.

__init__(columns: Optional[Union[Hashable, List[Hashable]]] = None, ignore_columns: Optional[Union[Hashable, List[Hashable]]] = None, num_percentiles: int = 1000, inner_quantile_range: int = 94, outlier_factor: int = 4, min_length_difference: int = 5, min_length_ratio_difference: float = 0.5, min_unique_value_ratio: float = 0.01, min_unique_values: int = 100, n_top_columns: int = 10, outlier_length_to_show: int = 50, samples_per_range_to_show: int = 3, **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

StringLengthOutOfBounds.add_condition(name, ...)

Add new condition function to the check.

StringLengthOutOfBounds.add_condition_number_of_outliers_less_or_equal([...])

Add condition - require column's number of string length outliers to be less or equal to the threshold.

StringLengthOutOfBounds.add_condition_ratio_of_outliers_less_or_equal([...])

Add condition - require column's ratio of string length outliers to be less or equal to threshold.

StringLengthOutOfBounds.clean_conditions()

Remove all conditions from this check instance.

StringLengthOutOfBounds.conditions_decision(result)

Run conditions on given result.

StringLengthOutOfBounds.config()

Return check configuration (conditions' configuration not yet supported).

StringLengthOutOfBounds.from_config(conf)

Return check object from a CheckConfig object.

StringLengthOutOfBounds.metadata([with_doc_link])

Return check metadata.

StringLengthOutOfBounds.name()

Name of class in split camel case.

StringLengthOutOfBounds.params([show_defaults])

Return parameters to show when printing the check.

StringLengthOutOfBounds.remove_condition(index)

Remove given condition by index.

StringLengthOutOfBounds.run(dataset[, ...])

Run check.

StringLengthOutOfBounds.run_logic(context, ...)

Run check.

Examples#