integrity_validation#

integrity_validation(**kwargs) Suite[source]#

Create a suite that is meant to validate integrity of the data.

Deprecated since version 0.7.0: integrity_validation is deprecated and will be removed in deepchecks 0.8 version, it is replaced by data_integrity suite.

run(self, train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, model: Optional[Module] = None, scorers: Optional[Mapping[str, Metric]] = None, scorers_per_class: Optional[Mapping[str, Metric]] = None, device: Optional[Union[str, device]] = None, random_state: int = 42, with_display: bool = True, n_samples: Optional[int] = None, train_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, test_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, model_name: str = '') SuiteResult#

Run all checks.

Parameters
train_dataset: Optional[VisionData] , default None

object, representing data an estimator was fitted on

test_datasetOptional[VisionData] , default None

object, representing data an estimator predicts on

modelnn.Module , default None

A scikit-learn-compatible fitted estimator instance

model_name: str , default: ‘’

The name of the model

scorersOptional[Mapping[str, Metric]] , default: None

dict of scorers names to a Metric

scorers_per_classOptional[Mapping[str, Metric]] , default: None

dict of scorers for classification without averaging of the classes. See <a href= “https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel”> scikit-learn docs</a>

deviceUnion[str, torch.device], default: ‘cpu’

processing unit for use

random_stateint

A seed to set for pseudo-random functions

n_samplesOptional[int], default: None

number of samples

with_displaybool , default: True

flag that determines if checks will calculate display (redundant in some checks).

train_predictions: Optional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None

Dictionary of the model prediction over the train dataset (keys are the indexes).

test_predictions: Optional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None

Dictionary of the model prediction over the test dataset (keys are the indexes).

Returns
SuiteResult

All results by all initialized checks