train_test_validation#

train_test_validation(n_top_show: int = 5, label_properties: Optional[List[Dict[str, Any]]] = None, image_properties: Optional[List[Dict[str, Any]]] = None, sample_size: Optional[int] = None, random_state: Optional[int] = None, **kwargs) Suite[source]#

Suite for validating correctness of train-test split, including distribution, integrity and leakage checks.

List of Checks:
List of Checks#

Check Example

API Reference

New Labels

NewLabels

Similar Image Leakage

SimilarImageLeakage

Heatmap Comparison

HeatmapComparison

Train Test Label Drift

TrainTestLabelDrift

Image Property Drift

ImagePropertyDrift

Image Dataset Drift

ImageDatasetDrift

Property Label Correlation Change

PropertyLabelCorrelationChange

Parameters
n_top_show: int, default: 5

Number of images to show for checks that show images.

label_propertiesList[Dict[str, Any]], default: None

List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys ‘name’ (str), ‘method’ (Callable) and ‘output_type’ (str), representing attributes of said method. ‘output_type’ must be one of: - ‘numeric’ - for continuous ordinal outputs. - ‘categorical’ - for discrete, non-ordinal outputs. These can still be numbers,

but these numbers do not have inherent value.

For more on image / label properties, see the vision_properties_guide. - ‘class_id’ - for properties that return the class_id. This is used because these

properties are later matched with the VisionData.label_map, if one was given.

image_propertiesList[Dict[str, Any]], default: None

List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys ‘name’ (str), ‘method’ (Callable) and ‘output_type’ (str), representing attributes of said method. ‘output_type’ must be one of: - ‘numeric’ - for continuous ordinal outputs. - ‘categorical’ - for discrete, non-ordinal outputs. These can still be numbers,

but these numbers do not have inherent value.

For more on image / label properties, see the vision_properties_guide.

sample_sizeint , default: None

Number of samples to use for checks that sample data. If none, using the default sample_size per check.

random_state: int, default: None

Random seed for all checks.

**kwargsdict

additional arguments to pass to the checks.

Returns
Suite

A Suite for validating correctness of train-test split, including distribution, integrity and leakage checks.

Examples

>>> from deepchecks.vision.suites import train_test_validation
>>> suite = train_test_validation(n_top_show=3, sample_size=100)
>>> result = suite.run()
>>> result.show()
run(self, train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, model: Optional[Module] = None, scorers: Optional[Mapping[str, Metric]] = None, scorers_per_class: Optional[Mapping[str, Metric]] = None, device: Optional[Union[str, device]] = None, random_state: int = 42, with_display: bool = True, n_samples: Optional[int] = None, train_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, test_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, model_name: str = '') SuiteResult#

Run all checks.

Parameters
train_dataset: Optional[VisionData] , default None

object, representing data an estimator was fitted on

test_datasetOptional[VisionData] , default None

object, representing data an estimator predicts on

modelnn.Module , default None

A scikit-learn-compatible fitted estimator instance

model_name: str , default: ‘’

The name of the model

scorersOptional[Mapping[str, Metric]] , default: None

dict of scorers names to a Metric

scorers_per_classOptional[Mapping[str, Metric]] , default: None

dict of scorers for classification without averaging of the classes. See <a href= “https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel”> scikit-learn docs</a>

deviceUnion[str, torch.device], default: ‘cpu’

processing unit for use

random_stateint

A seed to set for pseudo-random functions

n_samplesOptional[int], default: None

number of samples

with_displaybool , default: True

flag that determines if checks will calculate display (redundant in some checks).

train_predictions: Optional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None

Dictionary of the model prediction over the train dataset (keys are the indexes).

test_predictions: Optional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None

Dictionary of the model prediction over the test dataset (keys are the indexes).

Returns
SuiteResult

All results by all initialized checks