train_test_validation#
- train_test_validation(n_top_show: int = 5, label_properties: Optional[List[Dict[str, Any]]] = None, image_properties: Optional[List[Dict[str, Any]]] = None, sample_size: Optional[int] = None, random_state: Optional[int] = None, **kwargs) Suite [source]#
Suite for validating correctness of train-test split, including distribution, integrity and leakage checks.
- List of Checks:
# Check Example
API Reference
- Parameters
- n_top_show: int, default: 5
Number of images to show for checks that show images.
- label_propertiesList[Dict[str, Any]], default: None
List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys ‘name’ (str), ‘method’ (Callable) and ‘output_type’ (str), representing attributes of said method. ‘output_type’ must be one of: - ‘numeric’ - for continuous ordinal outputs. - ‘categorical’ - for discrete, non-ordinal outputs. These can still be numbers,
but these numbers do not have inherent value.
For more on image / label properties, see the vision_properties_guide. - ‘class_id’ - for properties that return the class_id. This is used because these
properties are later matched with the VisionData.label_map, if one was given.
- image_propertiesList[Dict[str, Any]], default: None
List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys ‘name’ (str), ‘method’ (Callable) and ‘output_type’ (str), representing attributes of said method. ‘output_type’ must be one of: - ‘numeric’ - for continuous ordinal outputs. - ‘categorical’ - for discrete, non-ordinal outputs. These can still be numbers,
but these numbers do not have inherent value.
For more on image / label properties, see the vision_properties_guide.
- sample_sizeint , default: None
Number of samples to use for checks that sample data. If none, using the default sample_size per check.
- random_state: int, default: None
Random seed for all checks.
- **kwargsdict
additional arguments to pass to the checks.
- Returns
- Suite
A Suite for validating correctness of train-test split, including distribution, integrity and leakage checks.
Examples
>>> from deepchecks.vision.suites import train_test_validation >>> suite = train_test_validation(n_top_show=3, sample_size=100) >>> result = suite.run() >>> result.show()
- run(self, train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, model: Optional[Module] = None, scorers: Optional[Mapping[str, Metric]] = None, scorers_per_class: Optional[Mapping[str, Metric]] = None, device: Optional[Union[str, device]] = None, random_state: int = 42, with_display: bool = True, n_samples: Optional[int] = None, train_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, test_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, model_name: str = '') SuiteResult #
Run all checks.
- Parameters
- train_dataset: Optional[VisionData] , default None
object, representing data an estimator was fitted on
- test_datasetOptional[VisionData] , default None
object, representing data an estimator predicts on
- modelnn.Module , default None
A scikit-learn-compatible fitted estimator instance
- model_name: str , default: ‘’
The name of the model
- scorersOptional[Mapping[str, Metric]] , default: None
dict of scorers names to a Metric
- scorers_per_classOptional[Mapping[str, Metric]] , default: None
dict of scorers for classification without averaging of the classes. See <a href= “https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel”> scikit-learn docs</a>
- deviceUnion[str, torch.device], default: ‘cpu’
processing unit for use
- random_stateint
A seed to set for pseudo-random functions
- n_samplesOptional[int], default: None
number of samples
- with_displaybool , default: True
flag that determines if checks will calculate display (redundant in some checks).
- train_predictions: Optional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None
Dictionary of the model prediction over the train dataset (keys are the indexes).
- test_predictions: Optional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None
Dictionary of the model prediction over the test dataset (keys are the indexes).
- Returns
- SuiteResult
All results by all initialized checks