DominantFrequencyChange#

class DominantFrequencyChange[source]#

Check if dominant values have increased significantly between test and reference data.

Deprecated since version 0.8.1: The DominantFrequencyChange check is deprecated and will be removed in the 0.11 version.

Parameters
dominance_ratiofloat , default: 2

Next most abundant value has to be THIS times less than the first (0-inf).

ratio_change_thresfloat , default: 1.5

The dominant frequency has to change by at least this ratio (0-inf).

n_top_columnsint , optional

amount of columns to show ordered by feature importance (date, index, label are first).

__init__(dominance_ratio: float = 2, ratio_change_thres: float = 1.5, n_top_columns: int = 10, **kwargs)[source]#
__new__(*args, **kwargs)#

Methods

DominantFrequencyChange.add_condition(name, ...)

Add new condition function to the check.

DominantFrequencyChange.add_condition_p_value_greater_than([...])

Add condition - require p value allowed per column to be greater than threshold.

DominantFrequencyChange.add_condition_ratio_of_change_less_than([...])

Add condition - require change in the ratio of the dominant value to be less the threshold.

DominantFrequencyChange.clean_conditions()

Remove all conditions from this check instance.

DominantFrequencyChange.conditions_decision(result)

Run conditions on given result.

DominantFrequencyChange.config()

Return check configuration (conditions' configuration not yet supported).

DominantFrequencyChange.from_config(conf)

Return check object from a CheckConfig object.

DominantFrequencyChange.metadata([with_doc_link])

Return check metadata.

DominantFrequencyChange.name()

Name of class in split camel case.

DominantFrequencyChange.params([show_defaults])

Return parameters to show when printing the check.

DominantFrequencyChange.remove_condition(index)

Remove given condition by index.

DominantFrequencyChange.run(train_dataset, ...)

Run check.

DominantFrequencyChange.run_logic(context)

Run check.

Examples#