model_evaluation#
- model_evaluation(scorers: Optional[Union[Dict[str, Union[str, Callable]], List[Any]]] = None, area_range: Tuple[float, float] = (1024, 9216), image_properties: Optional[List[Dict[str, Any]]] = None, prediction_properties: Optional[List[Dict[str, Any]]] = None, **kwargs) Suite [source]#
Suite for evaluating the model’s performance over different metrics, segments, error analysis, comparing to baseline, and more.
- List of Checks:
# Check Example
API Reference
plot_weak_segment_performance
WeakSegmentPerformance
- Parameters
- scorers: Union[Dict[str, Union[Callable, str]], List[Any]], default: None
Scorers to override the default scorers (metrics), find more about the supported formats at https://docs.deepchecks.com/stable/user-guide/general/metrics_guide.html
- area_range: tuple, default: (32**2, 96**2)
Slices for small/medium/large buckets. (For object detection tasks only)
- image_propertiesList[Dict[str, Any]], default: None
List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys
'name'
(str),method
(Callable) and'output_type'
(str), representing attributes of said method. ‘output_type’ must be one of:'numerical'
- for continuous ordinal outputs.'categorical'
- for discrete, non-ordinal outputs. These can still be numbers, but these numbers do not have inherent value.
For more on image / label properties, see the guide about Vision Properties.
- prediction_propertiesList[Dict[str, Any]], default: None
List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys
'name'
(str),method
(Callable) and'output_type'
(str), representing attributes of said method. ‘output_type’ must be one of:'numerical'
- for continuous ordinal outputs.'categorical'
- for discrete, non-ordinal outputs. These can still be numbers, but these numbers do not have inherent value.'class_id'
- for properties that return the class_id. This is used because these properties are later matched with theVisionData.label_map
, if one was given.
For more on image / label properties, see the guide about Vision Properties.
- **kwargsdict
additional arguments to pass to the checks.
- Returns
- Suite
A suite for evaluating the model’s performance.
Examples
>>> from deepchecks.vision.suites import model_evaluation >>> suite = model_evaluation() >>> test_vision_data = ... >>> result = suite.run(test_vision_data, max_samples=800) >>> result.show()
- run(self, train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, random_state: int = 42, with_display: bool = True, max_samples: Optional[int] = None, run_single_dataset: Optional[str] = None) SuiteResult #
Run all checks.
- Parameters
- train_datasetOptional[VisionData] , default: None
VisionData object, representing data the model was fitted on
- test_datasetOptional[VisionData] , default: None
VisionData object, representing data the models predicts on
- random_stateint
A seed to set for pseudo-random functions
- with_displaybool , default: True
flag that determines if checks will calculate display (redundant in some checks).
- max_samplesOptional[int] , default: None
Each check will run on a number of samples which is the minimum between the n_samples parameter of the check and this parameter. If this argument is None then the number of samples for each check will be determined by the n_samples argument.
- run_single_dataset: Optional[str], default None
‘Train’, ‘Test’ , or None to run on both train and test.
- Returns
- SuiteResult
All results by all initialized checks