DeepchecksModelClient.version#

DeepchecksModelClient.version(name: str, schema: Union[str, Path, TextIOBase, DataSchema] = None, feature_importance: Optional[Union[Dict[str, float], pd.Series[float]]] = None, model_classes: Optional[Sequence[str]] = None, create_if_not_exists: bool = True) Optional[DeepchecksModelVersionClient]#

Create a new model version.

Parameters
namestr

Name to display for new version

schemaUnion[str, pathlib.Path, io.TextIOBase, Dict[str, Dict[str, Any]]], default: None

path to a schema file, file like object with schema, or a dictionary representing a schema. Can be none if getting existing model version. This method expects that provided file will be in the next yaml format:

features:

foo: <feature-type> bar: <feature-type>

additional_data:

foo: <feature-type> bar: <feature-type>

where ‘feature-type’ is one of:
  • ‘numeric’

  • ‘integer’

  • ‘categorical’

  • ‘boolean’

  • ‘text’

  • ‘array_float’

  • ‘array_float_2d’

  • ‘datetime’

feature_importanceUnion[Dict[str, float], pandas.Series[float]], default: None

A dictionary or pandas series of feature names and their feature importance value.

model_classesOptional[Sequence[str]], default: None

List of classes used by the model. Must define classes in order to send probabilities.

create_if_not_existsbool, default: True

If True, create the model version if it does not exist (requires passing schema), else return None if not exists.

Returns
DeepchecksModelVersionClient

Client to interact with the newly created version.