DeepchecksModelVersionClient.get_reference_data#

DeepchecksModelVersionClient.get_reference_data(rows_count: int = 10000, filters: List[DataFilter] = None, deepchecks_format: bool = False) Union[DataFrame, Tuple[Dataset, Optional[ndarray], Optional[ndarray]]]#

Get DataFrame or Deepchecks dataset and predictions for a model version reference data.

Parameters
rows_countint, optional

The number of rows to return (random sampling will be used).

filterst.List[DataFilter], optional

Data filters to apply. Used in order to received a segment of the data based on selected properties. Required format for filters and possible operators are detailed under the respected objects which can be found at: from deepchecks_client import DataFilter, OperatorsEnum

deepchecks_formatbool, default False

If True will return in Deepchecks format: (Deepchecks dataset, predictions array, prediction probabilities array)

Returns
t.Union[‘pandas’.DataFrame, t.Tuple[Dataset, t.Optional[np.ndarray], t.Optional[np.ndarray]]]

The reference dataframe or if deepchecks_format is True - a tuple of: (Deepchecks dataset, predictions array, prediction probabilities array).