BoostingOverfit#
- class BoostingOverfit[source]#
 Check for overfit caused by using too many iterations in a gradient boosted model.
The check runs a pred-defined number of steps, and in each step it limits the boosting model to use up to X estimators (number of estimators is monotonic increasing). It plots the given score calculated for each step for both the train dataset and the test dataset.
- Parameters
 - scorerUnion[Callable, str] , default: None
 Scorer used to verify the model, either function or sklearn scorer name.
- scorer_namestr , default: None
 Name to be displayed in the plot on y-axis. must be used together with ‘scorer’
- num_stepsint , default: 20
 Number of splits of the model iterations to check.
- n_samplesint , default: 1_000_000
 number of samples to use for this check.
- random_stateint, default: 42
 random seed for all check internals.
- __init__(alternative_scorer: Optional[Tuple[str, Union[str, Callable]]] = None, num_steps: int = 20, n_samples: int = 1000000, random_state: int = 42, **kwargs)[source]#
 
- __new__(*args, **kwargs)#
 
Methods
  | 
Add new condition function to the check.  | 
  | 
Add condition.  | 
Remove all conditions from this check instance.  | 
|
Run conditions on given result.  | 
|
  | 
Return check instance config.  | 
  | 
Return check object from a CheckConfig object.  | 
  | 
Deserialize check instance from JSON string.  | 
  | 
Return check metadata.  | 
Name of class in split camel case.  | 
|
  | 
Return parameters to show when printing the check.  | 
Remove given condition by index.  | 
|
  | 
Run check.  | 
  | 
Run check.  | 
  | 
Serialize check instance to JSON string.  |