load_dataset#
- load_dataset(train: bool = True, batch_size: Optional[int] = None, shuffle: bool = True, pin_memory: bool = True, object_type: Literal['VisionData', 'DataLoader'] = 'DataLoader') Union[DataLoader, ClassificationData] [source]#
Download MNIST dataset.
- Parameters
- trainbool, default True
Train or Test dataset
- batch_size: int, optional
how many samples per batch to load
- shufflebool, default
True
to reshuffled data at every epoch or not
- pin_memorybool, default
True
If
True
, the data loader will copy Tensors into CUDA pinned memory before returning them.- object_typeLiteral[Dataset, DataLoader], default ‘DataLoader’
object type to return. if ‘VisionData’ then
deepchecks.vision.VisionData
will be returned, if ‘DataLoader’ thentorch.utils.data.DataLoader
- Returns
- Union[
deepchecks.vision.VisionData
,torch.utils.data.DataLoader
] depending on the
object_type
parameter value, instance ofdeepchecks.vision.VisionData
ortorch.utils.data.DataLoader
will be returned
- Union[