full_suite#
- full_suite(**kwargs) Suite [source]#
Create a suite that includes many of the implemented checks, for a quick overview of your model and data.
- run(self, train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, model: Optional[Module] = None, scorers: Optional[Mapping[str, Metric]] = None, scorers_per_class: Optional[Mapping[str, Metric]] = None, device: Optional[Union[str, device]] = None, random_state: int = 42, with_display: bool = True, n_samples: Optional[int] = None, train_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, test_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, train_properties: Optional[Dict[int, Dict[PropertiesInputType, Dict[str, Any]]]] = None, test_properties: Optional[Dict[int, Dict[PropertiesInputType, Dict[str, Any]]]] = None, model_name: str = '', run_single_dataset: Optional[str] = None) SuiteResult #
Run all checks.
- Parameters
- train_dataset: Optional[VisionData] , default None
object, representing data an estimator was fitted on
- test_datasetOptional[VisionData] , default None
object, representing data an estimator predicts on
- modelnn.Module , default None
A scikit-learn-compatible fitted estimator instance
- model_namestr , default: ‘’
The name of the model
- scorersOptional[Mapping[str, Metric]] , default: None
dict of scorers names to a Metric
- scorers_per_classOptional[Mapping[str, Metric]] , default: None
dict of scorers for classification without averaging of the classes. See scikit-learn docs.
- deviceUnion[str, torch.device], default: ‘cpu’
processing unit for use
- random_stateint
A seed to set for pseudo-random functions
- with_displaybool , default: True
flag that determines if checks will calculate display (redundant in some checks).
- train_predictionsOptional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None
Dictionary of the model prediction over the train dataset (keys are the indexes).
- test_predictionsOptional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None
Dictionary of the model prediction over the test dataset (keys are the indexes).
- run_single_dataset: Optional[str], default None
‘Train’, ‘Test’ , or None to run on both train and test.
- Returns
- SuiteResult
All results by all initialized checks