train_test_validation#
- train_test_validation(n_top_show: int = 5, label_properties: Optional[List[Dict[str, Any]]] = None, image_properties: Optional[List[Dict[str, Any]]] = None, random_state: Optional[int] = None, **kwargs) Suite[source]#
 Suite for validating correctness of train-test split, including distribution, integrity and leakage checks.
- List of Checks:
 List of Checks# Check Example
API Reference
- Parameters
 - n_top_showint, default: 5
 Number of images to show for checks that show images.
- label_propertiesList[Dict[str, Any]], default: None
 List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys
'name'(str),method(Callable) and'output_type'(str), representing attributes of said method. ‘output_type’ must be one of:'numeric'- for continuous ordinal outputs.'categorical'- for discrete, non-ordinal outputs. These can still be numbers, but these numbers do not have inherent value.'class_id'- for properties that return the class_id. This is used because these properties are later matched with theVisionData.label_map, if one was given.
For more on image / label properties, see the guide about Data Properties.
- image_propertiesList[Dict[str, Any]], default: None
 List of properties. Replaces the default deepchecks properties. Each property is a dictionary with keys
'name'(str),method(Callable) and'output_type'(str), representing attributes of said method. ‘output_type’ must be one of:'numeric'- for continuous ordinal outputs.'categorical'- for discrete, non-ordinal outputs. These can still be numbers, but these numbers do not have inherent value.
For more on image / label properties, see the guide about Data Properties.
- random_stateint, default: None
 Random seed for all checks.
- **kwargsdict
 additional arguments to pass to the checks.
- Returns
 - Suite
 A Suite for validating correctness of train-test split, including distribution, integrity and leakage checks.
Examples
>>> from deepchecks.vision.suites import train_test_validation >>> suite = train_test_validation(n_top_show=3) >>> result = suite.run(n_samples=800) >>> result.show()
- run(self, train_dataset: Optional[VisionData] = None, test_dataset: Optional[VisionData] = None, model: Optional[Module] = None, scorers: Optional[Mapping[str, Metric]] = None, scorers_per_class: Optional[Mapping[str, Metric]] = None, device: Optional[Union[str, device]] = None, random_state: int = 42, with_display: bool = True, n_samples: Optional[int] = None, train_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, test_predictions: Optional[Dict[int, Union[Sequence[Tensor], Tensor]]] = None, train_properties: Optional[Dict[int, Dict[PropertiesInputType, Dict[str, Any]]]] = None, test_properties: Optional[Dict[int, Dict[PropertiesInputType, Dict[str, Any]]]] = None, model_name: str = '', run_single_dataset: Optional[str] = None) SuiteResult#
 Run all checks.
- Parameters
 - train_dataset: Optional[VisionData] , default None
 object, representing data an estimator was fitted on
- test_datasetOptional[VisionData] , default None
 object, representing data an estimator predicts on
- modelnn.Module , default None
 A scikit-learn-compatible fitted estimator instance
- model_namestr , default: ‘’
 The name of the model
- scorersOptional[Mapping[str, Metric]] , default: None
 dict of scorers names to a Metric
- scorers_per_classOptional[Mapping[str, Metric]] , default: None
 dict of scorers for classification without averaging of the classes. See scikit-learn docs.
- deviceUnion[str, torch.device], default: ‘cpu’
 processing unit for use
- random_stateint
 A seed to set for pseudo-random functions
- with_displaybool , default: True
 flag that determines if checks will calculate display (redundant in some checks).
- train_predictionsOptional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None
 Dictionary of the model prediction over the train dataset (keys are the indexes).
- test_predictionsOptional[Dict[int, Union[Sequence[torch.Tensor], torch.Tensor]]] , default None
 Dictionary of the model prediction over the test dataset (keys are the indexes).
- run_single_dataset: Optional[str], default None
 ‘Train’, ‘Test’ , or None to run on both train and test.
- Returns
 - SuiteResult
 All results by all initialized checks