RegressionSystematicError.run#
- RegressionSystematicError.run(dataset: Union[Dataset, DataFrame], model: Optional[BasicModel] = None, feature_importance: Optional[Series] = None, feature_importance_force_permutation: bool = False, feature_importance_timeout: int = 120, with_display: bool = True, y_pred: Optional[ndarray] = None, y_proba: Optional[ndarray] = None, y_pred_train: Optional[ndarray] = None, y_pred_test: Optional[ndarray] = None, y_proba_train: Optional[ndarray] = None, y_proba_test: Optional[ndarray] = None, model_classes: Optional[List] = None) CheckResult[source]#
 Run check.
- Parameters
 - dataset: Union[Dataset, pd.DataFrame]
 Dataset or DataFrame object, representing data an estimator was fitted on
- model: Optional[BasicModel], default: None
 A scikit-learn-compatible fitted estimator instance
- feature_importance: pd.Series , default: None
 pass manual features importance
- feature_importance_force_permutationbool , default: False
 force calculation of permutation features importance
- feature_importance_timeoutint , default: 120
 timeout in second for the permutation features importance calculation
- y_pred_train: Optional[np.ndarray] , default: None
 Array of the model prediction over the train dataset.
- y_pred_test: Optional[np.ndarray] , default: None
 Array of the model prediction over the test dataset.
- y_proba_train: Optional[np.ndarray] , default: None
 Array of the model prediction probabilities over the train dataset.
- y_proba_test: Optional[np.ndarray] , default: None
 Array of the model prediction probabilities over the test dataset.
- model_classes: Optional[List] , default: None
 For classification: list of classes known to the model