MNISTData#
- class MNISTData[source]#
 Class for loading MNIST dataset, inherits from
deepchecks.vision.classification_data.ClassificationData.Implement the necessary methods for the
deepchecks.vision.classification_data.ClassificationDatainterface.- __init__(data_loader: DataLoader, num_classes: Optional[int] = None, label_map: Optional[Dict[int, str]] = None, transform_field: Optional[str] = 'transforms', dataset_name: Optional[str] = None)[source]#
 
- __new__(*args, **kwargs)#
 
Attributes
Return dict of classes as keys, and list of corresponding indices (in Dataset) of samples that include this class (in the label).  | 
|
Return how many dimensions the image data have.  | 
|
Return the data loader.  | 
|
Return True if the data loader has images.  | 
|
Return True if the data loader has labels.  | 
|
Return a dictionary containing the number of samples per class.  | 
|
Return the number of classes in the dataset.  | 
|
Return the number of samples in the dataset.  | 
|
Return the number of samples in the original dataset.  | 
|
Return the task type (classification).  | 
|
Return the data loader.  | 
Methods
Assert the image formatter defined is valid.  | 
|
Assert the label formatter defined is valid.  | 
|
  | 
Return batch samples of the given batch indices.  | 
  | 
Convert a batch of mnist data to images.  | 
  | 
Convert a batch of mnist data to labels.  | 
  | 
Create new copy of this object, with the data-loader and dataset also copied, and altered by the given parameters.  | 
  | 
Create VisionData instance from a Dataset instance.  | 
Return a copy of the vision data object with the augmentation in the start of it.  | 
|
  | 
Get a labels batch and return classes inside it.  | 
Return transforms handler created from the transform field.  | 
|
  | 
Infer on a batch of mnist data.  | 
Initialize the cache of the classes' metadata info.  | 
|
Return whether the vision data is running on sample of the data.  | 
|
  | 
Return the name of the class with the given id.  | 
  | 
Use the defined collate_fn to transform a few data items to batch format.  | 
  | 
Return for the given batch_index the sample index in the dataset object.  | 
  | 
Get labels and update the classes' metadata info.  | 
  | 
Validate the correctness of the data class implementation according to the expected format.  | 
Validate that the get_classes function returns data in the correct format.  | 
|
Validate that the data is in the required format.  | 
|
Validate the inferred predictions from the batch.  | 
|
  | 
Validate the label.  | 
  | 
Validate the prediction.  | 
Verify presence of shared labels.  |