Multi Model Performance Report#

This notebook provides an overview for using and understanding the Multi Model Performance Report check.

Structure:

What is the Multi Model Performance Report?#

The MultiModelPerformanceReport check produces a summary of performance scores for multiple models on test datasets. The default scorers that are used are F1, Precision and Recall for Classification and Negative RMSE (Root Mean Square Error), Negative MAE (Mean Absolute Error) and R2 for Regression.

Multiclass check#

Imports#

from sklearn.datasets import load_iris
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from deepchecks.tabular import Dataset
from deepchecks.tabular.checks import MultiModelPerformanceReport

Generate data & model#

iris = load_iris(as_frame=True)
train, test = train_test_split(iris.frame, test_size=0.33, random_state=42)

train_ds = Dataset(train, label="target")
test_ds = Dataset(test, label="target")

features = train_ds.data[train_ds.features]
label = train_ds.data[train_ds.label_name]
clf1 = AdaBoostClassifier().fit(features, label)
clf2 = RandomForestClassifier().fit(features, label)
clf3 = DecisionTreeClassifier().fit(features, label)

Run the check#

MultiModelPerformanceReport().run(train_ds, test_ds, [clf1, clf2, clf3])
Multi Model Performance Report


Regression check#

Imports#

from sklearn.datasets import load_diabetes
from sklearn.ensemble import AdaBoostRegressor, RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor

Generate data & model#

diabetes = load_diabetes(as_frame=True)
train, test = train_test_split(diabetes.frame, test_size=0.33, random_state=42)

train_ds = Dataset(train, label="target", cat_features=['sex'])
test_ds = Dataset(test, label="target", cat_features=['sex'])

features = train_ds.data[train_ds.features]
label = train_ds.data[train_ds.label_name]
clf1 = AdaBoostRegressor().fit(features, label)
clf2 = RandomForestRegressor().fit(features, label)
clf3 = DecisionTreeRegressor().fit(features, label)

Run the check#

MultiModelPerformanceReport().run(train_ds, test_ds, [clf1, clf2, clf3])
Multi Model Performance Report


Total running time of the script: (0 minutes 0.755 seconds)

Gallery generated by Sphinx-Gallery