Note
Go to the end to download the full example code
ROC Report#
This notebook provides an overview for using and understanding the ROC Report check.
Structure:
What is the ROC Report check?#
The ROCReport
check calculates the ROC curve for each class.
The ROC curve is a plot of TPR (true positive rate) with respect to FPR (false positive rate)
at various thresholds (ROC curve).
Imports#
import warnings
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from deepchecks.tabular import Dataset
from deepchecks.tabular.checks import RocReport
def custom_formatwarning(msg, *args, **kwargs):
return str(msg) + '\n'
warnings.formatwarning = custom_formatwarning
Generate data & model#
iris = load_iris(as_frame=True)
clf = LogisticRegression(penalty='none')
frame = iris.frame
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=55)
clf.fit(X_train, y_train)
ds = Dataset(pd.concat([X_test, y_test], axis=1),
features=iris.feature_names,
label='target')
Run the Check#
Define a condition#
A condition for minimum allowed AUC score per class can be defined. Here, we define minimum AUC score to be 0.7.
Total running time of the script: (0 minutes 0.087 seconds)